Working Paper No. 167

INSTABILITY OF PUBLIC SECTOR INVESTMENT

R.M. Sundrum

Centre for Development Studies
Ulloor, Trivandrum 695011

March, 1983
In Indian planning, one of the most important instruments for government to promote the country's development is public sector investment. There has therefore been great interest in the level and growth of such investment. There has, however, been less discussion of the instability of public sector investment, which is also important. This paper deals with some aspects of the causes and consequences of such instability.

In studies of export instability, it has generally been found that in cases where exports are growing rapidly, they are also accompanied by a high degree of instability; in these cases, the instability may be attributed to the rapidity of growth itself. But it has also been found that slow growth of exports is also accompanied by a high degree of instability (see e.g. Sundrum, 1983, Table 11.16p. 228). In this case, it is likely that instability itself may be a cause of slow growth of exports. This may be a fairly general relationship between instability and growth, especially in cases where the impulses to growth are themselves rather weak.

One theoretical explanation is of an essentially statistical nature. Consider a variable X_t which grows at a fluctuating rate r_t and attains a value X_K after K years. Then it can be shown that X_K will be less than the value \bar{X}_K, which the variable would have attained if it had grown steadily at the average rate of growth m instead of the fluctuating rate by a factor depending on the instability of the actual growth rates:
where \(CV \) is the coefficient of variation of the annual growth rates.

It is easy to verify that this relationship holds exactly for \(k = 2 \) and approximately for \(k > 2 \). For example, for \(k = 30, m = 2.7 \) per cent per annum and \(CV = 2.3 \) (the values of the parameters of the growth rates of GDP in the agricultural sector in the past 30 years), the actual value is about 5.6 per cent less than what it would have been if growth had been steady at the average rate actually observed, i.e. a "loss" of nearly 1 per cent every five years.

However, this is only a statistical effect of instability on growth, in that it assumes that all other factors affecting growth are unaffected except that growth is steady. In practice, it is likely that instability of growth will affect these other conditions, especially the state of confidence, and the increase in uncertainty surrounding decision making will have more serious effects on the growth process.

Instability of Public Sector Investment

In a less-developed country like India, there is a great deal of instability in the output of the agricultural sector, a major sector of the economy, because of its heavy dependence on weather conditions. The instability in this sector will have severe adverse effects on the whole economy. Ultimately, the solution lies in sufficient investment, especially in irrigation and flood control, and the use of modern technology. Already this approach has made a difference in parts of the country.
example, it has been argued that "Punjab is the only state to record steady growth rate over the period. This could be attributed to the large-scale adoption of new technology in the agriculture of the State which facilitates to withstand drought conditions and thereby dampens the fluctuations in output." (RBI Bulletin, September 1981, p.814). The more rapidly such a new technology is spread over the whole country, the more vulnerable the economy will be to the instability originating in rural factors, and its adverse effects on growth. But even with greater efforts in this direction, the resources required to tame the natural factors by investment and extension of modern technology are so great that it will take a long time to stabilize agricultural growth. Therefore, in the medium term, an important task of policy is to insulate the rest of the economy from the fluctuations of agricultural output as far as possible. An important instrument for this purpose is public sector investment.

The fluctuations in the growth rate of public sector investment in real terms (i.e. in 1970/71 prices) are illustrated in Fig.1.

Figure 1

CSO estimates of public sector investment in 1970/71 prices are available only for part of the period. Therefore, estimates for the entire period have been made for the present exercise by taking the CSO estimates of public sector investment in current prices classified by type of assets — construction, machinery and equipment, and ages in stock — and deflating them by the price indices of these
The above figure clearly shows the great instability of public sector investment growth rates in real terms. These growth rates over the past three decades had an annual average of 8.68 per cent and a coefficient of variation of 1.72. The situation has been aptly described by Dr. Vikas Chitre (1981, p. 93) as follows: "To the ever present causes of fluctuations such as the fluctuations in agricultural production, the fluctuations in the private business investment in fixed capital and inventories, and the fluctuations in the world economic activity, the planning era in the country has added a new factor causing fluctuations, viz., the fluctuations in the public sector investment in fixed capital and stocks. The fluctuations in the public sector investment in fixed capital and stocks have been quite sharp in India over the twenty-five years of planning, and they seem to have accentuated rather than mitigated the fluctuations arising out of the other causes."

Some Consequences

We now turn to consider the causes and consequences of the instability in public sector investment. For this preliminary study, we rely mainly on the method of calculating the coefficient of variation of annual growth rates of various related magnitudes, and the correlations of the growth rates in pairs of such magnitudes.

One consequence of the unstable growth of public sector investment is simply the statistical effect mentioned above. Then, we see that the total investment that was actually carried out in the public sector over the past nearly three decades (1950/51 to 1978/79) was 6.75 per cent less than it would have been if this investment had grown steadily at the same
average rate. The actual public sector investment in 1978/79 was 23 per cent lower than if it had grown since 1950/51 at a constant rate equal to the average (corresponding to the approximate estimate of less of 28 per cent given by the formula (1).

But other consequences have probably been even more serious. A considerable amount of discussion has focussed on the relationship between public sector investment and output in the manufacturing sector. It has been argued, on the basis of DGGTD data on gross output of the sector, that there has been a deceleration in the growth of this output since the mid-sixties; however, the data on value added shown by estimates of GDP in the sector do not show much deceleration (cf. I.J.Ahuwalia, 1982). However, there is still considerable fluctuation in the growth rates of manufacturing GDP, with an average over the whole period of 5.7 per cent per annum and a CV of 0.6.

Some of the relationships involved are illustrated in Fig.2. In this figure, the number next to a variable is the CV of its growth rates, and the number on the line joining two variables is the simple correlation coefficient between the growth rates of these variables.

A number of authors have argued that there has been a deceleration in the growth of manufacturing which was due to the level of production in agriculture. Similarly, it may be argued that the fluctuations in manufacturing also reflect the fluctuations in agriculture. The relationship has been assumed to work partly on the supply side through the agricultural raw materials used as inputs in the agro-based industries and on the demand side through changes in income of the agricultural
sector and its effective demand for manufactures (see e.g. Rangarajan, 1962). In fact, manufacturing GDP growth rates lagged one year had a positive correlation of 0.25 with agricultural GDP growth rates. This relationship is certainly important but it may not be sufficient to explain all the trends and fluctuations in the manufacturing sector. In particular, any deceleration tendency in the manufacturing sector cannot be explained only in terms of a corresponding tendency in agriculture, where the average growth rate has not declined since the late sixties and may even be slightly higher in the later period. There is a considerable correlation between agricultural GDP growth rates and growth rates of non-manufacturing non-agricultural GDP, which latter are highly correlated with manufacturing GDP growth rates, but there is practically no correlation between growth rates of agricultural GDP and private sector investment, which however is correlated with manufacturing GDP growth rates.

It is therefore useful to consider the alternative explanation that agriculture affects manufacturing indirectly through public sector investment. Srinivasan and Narayana (1977) and Patnaik and Rao (1977) have argued this point with regard to the levels of activity. As far as the transmission of fluctuations is concerned, the point is also confirmed when we consider annual growth rates. While agricultural growth rates influenced public sector investment growth rates (correlation = 0.22 with one year lag), the latter have influenced manufacturing GDP growth rates (correlation = 0.34). Similarly, we find close positive relationship between public and private sector investments, and between private sector investment and manufacturing GDP growth rates. There is
A similar set of influences on non-manufacturing non-agricultural growth rates. It seems therefore that public sector investment plays a significant role in transmitting the fluctuations of the agricultural sector to the rest of the economy, or otherwise causing fluctuations in the other sectors. It is also easier to see why this should so, for the manufacturing sector especially is likely to be geared to meet the sort of demand arising from public sector investment also to use the services of such investment as inputs. In view of the importance of the public sector investment in its effects on the economy, we turn to consider the factors responsible for its high degree of instability.

Casual Factors

We have seen that there is a positive relationship between agricultural GDP and public sector investment growth rates. Why should these variables be related? One of the possible explanations is that this relationship operates primarily through the price factor. The relationships involved are illustrated in Fig. 3.

Figure 3

As may be expected, annual rates of change of the price level, measured by the GDP deflator are negatively correlated (−0.15) with agricultural GDP growth rates. But the PBI price deflator has no correlation with the GDP deflator. Further, the annual changes in the PBI deflator are positively correlated with agricultural GDP growth rates.
It is difficult to explain the relationship between agriculture and the PBI price index.

The annual changes in the real value of public sector investment are the composite of the changes in its nominal value and the changes in its price index. It turns out that while there is a strong positive relationship between the changes in the nominal and real values of public sector investment, the changes in the nominal value appear to be negatively correlated with the changes in agricultural GDP. Furthermore, the nominal changes in public sector investment are relatively stable (CV = .64); therefore, the great instability of public sector investment is unlikely to have arisen through the changes in its nominal value. Instead, it is more likely to have resulted from the highly unstable changes in the price index of public sector investment (correlation = -.29). Two types of measures are therefore needed to stabilize public sector investment, one to reduce price fluctuations, especially of food items and the other to reduce the impact of these fluctuations.

We can also study the instability of public sector investment the point of view of its financing, according to the equation for the public sector:

\[
\text{Revenue receipts} + \text{Other receipts} = \text{Total outlay} = \text{non-investment expenditure} + \text{investment expenditure}.
\]

The only comprehensive time series (covering both central and state governments) of revenue and other receipts and total outlays are the given in the Economic Survey from 1960/61 onwards; so we have used t
For these variables. However, there is no systematic way in which these
otal outlays can be split into investment and non-investment expenditures.
therefore, we have taken the investment expenditures as given by the CSG
series of GDP in current prices, and derived the non-investment expendi-
tures. For the present analysis, in order to maintain the validity of the
uation, all values were deflated by the GDP deflator. The orders of
agnitude of the components of this equation are shown in the following
able in 1970/71 prices.

Table: Financing of Public Sector Investment and Development Outlays (Rs.crores at 1970/71 prices)

<table>
<thead>
<tr>
<th>Item</th>
<th>Average annual values</th>
<th>Averages of annual rate of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average receipts</td>
<td>4210</td>
<td>5351</td>
</tr>
<tr>
<td>Other receipts</td>
<td>1850</td>
<td>2074</td>
</tr>
<tr>
<td>Total outlays</td>
<td>5060</td>
<td>7425</td>
</tr>
<tr>
<td>Ex-investment exp.</td>
<td>3570</td>
<td>4940</td>
</tr>
<tr>
<td>Investment exp.</td>
<td>2490</td>
<td>2485</td>
</tr>
<tr>
<td>Ex-development exp.</td>
<td>2247</td>
<td>3203</td>
</tr>
<tr>
<td>Development exp.</td>
<td>3813</td>
<td>4222</td>
</tr>
</tbody>
</table>

The degree of instability in these variables (measured by the
icient of variation) and the strength of relationships between
ith rates (measured by the correlation coefficient) are illustrated
Fig. 4.

Figure 4
We find that revenue receipts, other receipts, and their total are all positively related to agricultural GDP growth rates with a one year lag (indicated by L), while there is little effect on the changes in non-investment expenditures. All these variables also have considerable instability, though revenue receipts are least so. In turn, all these variables are highly positively correlated with public sector investment. Therefore, we may conclude that the financial arrangements have been of a fairly constant structure, and have done little to mitigate the influence of agricultural fluctuations on public sector investment.

The concept of public sector investment has generally been recognised as being too narrow in Indian planning discussions. Instead, a more relevant concept in connection with measures to promote growth is that of development outlays. The above table also includes the order of magnitude of the division of total public sector outlays into development and non-development outlays. The relationships of changes in these magnitudes with changes in agricultural GDP and public sector investment are illustrated in Fig. 5.

Figure 5

Again we find that changes in non-development outlays, like changes in non-investment expenditures, are not highly correlated with agricultural changes. Development outlay changes are highly correlated with agricultural fluctuations, but the relationship may actually operate through total and non-development outlays.
Including Remarks

This has been only a preliminary analysis. The tools used were rather primitive. But it may suffice to highlight the high degree of instability of public sector investment and its probable causes and consequences. In order to achieve greater stability of this crucial variable, it is hoped that the present exercise will stimulate others to study the whole problem systematically with more appropriate tools of analysis.
GROWTH RATES OF PUBLIC SECTOR INVESTMENT: 1970/71 prices
Figure 2

Notes: PBI = public sector investment in real terms

PRI = private sector investment in real terms
Figure 3
Figure 4

Agr GDP (2.82)

(.31L)

(.71)

(.65)

Non-investment exp. (2.27)

(.47)

other receipts (1.87)

Total receipts (1.21)

PBI (2.18)
References

